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Tropical forests in the Americas are changing
too slowly to track climate change
Jesús Aguirre-Gutiérrez* et al.

INTRODUCTION: Tropical land regions are ex-
periencing rapid climate change, with some
scenarios for the tropical Americas projecting
temperature increases of up to ~4°C and pre-
cipitation reductions of close to 20% by 2100.
This would expose current species assemb-
lages to climates that they have never exper-
ienced before, potentially selecting for future
plant communities adapted to such climates
but unlike those currently observed. Commu-
nity responses to climate changewill thus likely
depend on underlying mechanisms and geo-
graphical context. In the face of threats from
climate change, it is both critical and urgent
to understand the ability of these complex
systems to adapt to change and survive. The
relationships among environmental condi-
tions, plant performance, and distribution
are mediated by species’ functional traits.
Therefore, a trait-based approach provides a

promising framework for predicting the im-
pacts of climate change and resilience across
forest ecosystems.

RATIONALE: Climate change is already affect-
ing the survival and distribution of tropical
American plant communities. If species re-
spond to climate change through migration,
then we would expect montane communities
to track changes in climate better than those
in the lowland forests because mountains have
different climate conditions occurring at shorter
distances and thus are potentially easier to mi-
grate across than lowlands. Given exposure to a
drying and warming climate, we could expect
increased abundance of species exhibitingmore
drought-tolerance traits. Drought-avoidance
traits, notably deciduousness, could also be-
come more prominent in the future as an ad-
aptation to increasing drought.

It is as yet unclear how shifts in the abun-
dance and distribution of species translate
into changes in functional composition and
what functional changes have occurred as a
response to the onset of a warmer, drier, and
more variable climate across the tropical
Americas. It is uncertain if these functional
shifts match the direction of climate change
and, if so, whether the rate of functional trait
change keeps pace with climate change or lags
behind. Here, we address these knowledge
gaps by analyzing tree community trait shifts
that have occurred across the past 40 years in
tropical forests of the Americas due to the
dynamics of survivor, recruit, and fatality tree
assemblages. The survivor tree assemblages
consist of trees with traits potentially better
suited to existing climatic conditions, and the
recruit assemblages are composed of individ-
uals with traits adapted to emerging climatic
conditions. The fatality assemblages could re-
present individuals with less resilient traits
that cause their inability to cope with climatic
shifts. We also quantify if the observed changes
in trait composition have been enough to track
climate change to date.

RESULTS:Overall, we found that lowland forests
show significant and larger changes in more
community traits than montane forests. Across
forests and for the survivor assemblages, the
abundance of deciduous species is increasing,
with accompanying increases in leaf photo-
synthetic capacity and decreases in leaf area
and leaf thickness, perhaps as an adaptation
to a warmer and dryer climate. However, the
recruiting communities in the lowland forests
have, on average, exhibited decreases in their
abundance of deciduous species, in leaf carbon
and nitrogen content, and in wood density.
Crucially, most of these traits are changing at
only a fraction of the rate required tomaintain
equilibrium with climate in the full tree com-
munity and survivor assemblages. The recruit-
ing communities show the best tracking of a
changing climate.

CONCLUSION: Our analysis demonstrates that
tree community composition is shifting to track
climate change, but tree species composition
and functional properties of tropical American
forests (and possibly all tropical forests) are
increasingly out of equilibrium with local cli-
mate. Such disequilibrium likely increases vul-
nerability to climate change.▪
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Initial community assemblage

Time
Recruit assemblage
<22% tracking climate

Fatality assemblage
Not tracking climate

Survivor assemblage
<8% tracking climate

The survivors
bear potentially more
resistant trait
values in face of
environmental change.    

New individuals bring traits
potentially better adapted
to the new climate. 

These casualities bear
potentially less resistant trait
values to a changing clmate.  

Mechanisms driving changes in community trait composition and climate tracking. Changes in climatic
conditions significantly influence tropical forest tree community dynamics, including survival (survivor assemblages),
recruitment (recruit assemblages), and mortality (fatality assemblages). Quantifying these community dynamics
is crucial for understanding how tropical forests adapt to and track a changing climate. Survivor assemblages consist
of trees with traits potentially suited to existing climatic conditions, aiding in incremental climate tracking. Conversely,
recruit assemblages are composed of individuals with traits potentially better adapted to emerging climatic
conditions, enhancing their ability to thrive under new environmental conditions. By contrast, fatality assemblages
represent individuals with less resilient traits, leading to their inability to cope with climatic shifts. Our analysis reveals
that survivor assemblages are tracking climate changes at <8% of the expected rate given current climate shifts.
Recruit assemblages demonstrate a higher tracking rate, ~22% of the expectation. However, fatality assemblages by
definition do not track climate because they consist of individuals that have already perished, likely due to their
inadequate adaptation to changing climatic conditions.
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Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation
science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical
forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in
recent decades as a response to changes in climate. Based on historical trait-climate relationships, we found
that, overall, the studied functional traits show shifts of less than 8% of what would be expected given the
observed changes in climate. However, the recruit assemblage shows shifts of 21% relative to climate change
expectation. The most diverse forests on Earth are changing in functional trait composition but at a rate that
is fundamentally insufficient to track climate change.

F
orest responses to human-driven pertur-
bations such as climate changewill large-
ly determine the diversity and function
of the terrestrial biosphere through this
century and beyond. The Americas host

the greatest concentration of tree species in
the world (1), including six key biodiversity
hotspots (2) and half of Earth’smost intact trop-

ical forests (3). In the face of threats fromclimate
change and continuing loss in area and integrity
(3–6), it is both critical andurgent to understand
the ability of these complex systems to adapt
to change and survive.
Within tropical American forests (by which

we mean all forests encompassing continental
areas fromMexico to Brazil), lowland forests

provide relatively homogeneous climatic con-
ditions over large areas, potentially allowing
the existence of common functional adapta-
tions over large spatial extents. By contrast,
across mountain forests, climatic conditions
tend to change rapidly in space, potentially
facilitating the rapid turnover of functional
adaptations to local environmental conditions.
In Amazonia, changes in precipitation patterns
and more frequent droughts have led to an
increase in the recruitment of dry-affiliated
species (xerophilization) (7). In theAndes, rising
temperatures have led to increasing abundan-
ces of species tolerant to higher temperature
(thermophilization) (8). Across Mesoamerica,
it is expected that climate changewill cause an
expansion of tropical dry forests to higher ele-
vations (>200 m above current average eleva-
tion) (9). However, tree species may be unable
to shift their distribution fast enough to track
their climatic niche given their slow demog-
raphy (e.g., growth and recruitment), the
prevalence of dispersal limitation (10), and
different environmental tolerances at different
life stages (11). All of these limitations would
increase the vulnerability of tree species to cli-
mate change across tropical American forests.
For instance, in higher latitudes, recent work
has shown large range contractions of tree
species rather than range expansions or shifts
(12). Changes in climate across the tropical
Americas are expected to become stronger,
with some scenarios projecting temperature
increases of up to ~4°C and precipitation re-
ductions close to 20% by 2100 (13–15). This
would likely increase the vulnerability of cur-
rent tree species assemblages because they
would face climates that they have not pre-
viously experienced (16), potentially selecting
for no-analog future plant communities (17).
Functional traits mediate species responses

to environmental change, affecting plant per-
formance and species distributions (18–20).
These morphological, structural, chemical, and
phenological characteristics tend to show con-
sistent relationships with climate and soil con-
ditions (21). Recent work has shown positive
relationships between mean annual temper-
ature and leaf area, specific leaf area (SLA),
leaf N content, wood density (WD), and leaf
thickness (22), depicting plant functional ad-
aptations to local environmental conditions.
Other work has detected a negative relation-
shipwith elevation for SLA and leaf N content,
potentially as an adaptation to cooler environ-
ments with lower nutrient availability (22).
Therefore, these traits are tightly linked to the
capacity of plant species to respond to envi-
ronmental changes. For instance, having large
area (i.e., larger leaves) can increase leaf tem-
perature due tohigher solar absorption,whereas
smaller leaves dissipate heat more effectively
and help to prevent water loss. Plants with
lower SLA, i.e., with thicker and tougher leaves,
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tend to be more resistant to drought because
they can better resist water loss. High WD is
tightly related to increased resistance to cavi-
tation, which can increase the plant’s capacity
to survive droughts. Therefore, a trait-based
approach provides a promising framework for
predicting the impacts of climate change and
resilience across forest ecosystems (19, 23, 24).
It is still unclear how shifts in the abun-

dance and distribution of species translate
into changes in the functional trait compo-
sition and what functional changes have oc-
curred through the past half century as a
response to the onset of a warmer, drier, and
more variable climate across the tropical
Americas. Moreover, it is unknown whether
forest-level functional shifts are more attrib-

utable to differential growth among the sur-
viving trees than to the addition (i.e., re-
cruitment) or removal (i.e., mortality) of trees
to the assemblage. It is also uncertain if these
functional shifts match the direction of cli-
mate change and, if so, whether the rate of
functional trait change keeps pace with cli-
mate change or lags behind it. Understand-
ing the above will allow the quantification of
the present, and likely future, capacity of forest
to adapt to a changing climate and also to
uncover which functional trait characteristics
may confer forests with a higher adaptation
capacity to a changing climate.
Here, we address these knowledge gaps by

analyzing records from 415 long-term forest plot
sitesmonitored over >40 years (1980 to 2021) by

the RAINFOR andMONAFOR networks and
contributors to the ForestPlots.netmeta-network.
This dataset includes information on the iden-
tity, size, recruitment, and mortality of >250,000
individual trees across the tropics fromMexico
to southern Brazil. Our effort spans relatively
undisturbed forests from the lowland tropics
(hereafter forest plots <700 m elevation) to
pre-montane andmontane zones (>700m ele-
vation; hereafter referred to as montane) from
the Andes to subtropical fringes (Fig. 1 and
data S1). These forests are distributed along
a wide range of climatic and soil conditions
(Fig. 1B) and have experienced strong changes
in climate over the past decades (Fig. 1C). We
combined this monitoring and analysis of
changes in the plant community composition
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withmeasurements of 12 plant functional traits
that are potentially involved in responses
to a changing climate. These include photo-
synthetic capacity (Asat), leaf chemistry (con-
tent of leaf C, N, and P), leaf area, SLA, leaf
fresh mass (FM), leaf thickness, abundance of
deciduous species (DE), adult maximum height
(Hmax), WD, and seed mass (SM) (table S1). Tree
functional trait data were obtained for several
plots from local field collections carried out by
collaborators (25–27), the Global Ecosystems
Monitoring network (GEM) (28), and Forest-
Plots (www.ForestPlots.net) (29), in addition to
databases from the Botanical Information and
Ecology Network (BIEN; bien.nceas.ucsb.edu),
the TRY Plant Trait Database (www.try-db.org)
(30), and Díaz et al. (19, 31).
We first investigated long-term plant trait-

environment relationships to understand how
climate drives trait distributions in tropical
forests of the Americas and if these relation-
ships are consistent across lowland and mon-
tane forests. We expected temperature and
water availability to be the main drivers of
plant trait distributions, with warmer and
drier areas facilitating the dominance of more
conservative trait syndromes (e.g., smaller and
thicker leaves, higher WD, lower Asat) com-
pared with warm and wetter areas (32, 33).
Moreover, we expected trait-environment rela-
tionships to differ between lowland and mon-
tane forests given the different climatic ranges
of these forest types.
We next studied how and where lowland

and montane tropical American forests have
shifted in their functional trait composition

due to changes in the plant community tax-
onomic composition over the past four dec-
ades. We did this by analyzing the annual
rate of change (Dr) of the trait community-
weighted mean (CWM) for all forests (low-
land andmontane together) and for lowland
and montane forest separately. Because of the
long lifespan of tropical trees (34) and their
slow turnover, we performed this analysis at
the full community level and separately for
the recruiting (“recruit”), mortality (“fatality”),
and surviving (hereafter “survivor”) assemb-
lages (Fig. 2). Analyzing changes at the full
community level [involving all trees >10 cm
diameter at breast height (DBH) alive] allows
us to understand how communities are chang-
ing in their trait CWM given tree growth,
survival, and recruitment together. Analyzing
the survivor (change in CWMgiven by growth)
assemblage alone will provide insights into
potentially more resistant trait values, whereas
analyses for the fatality assemblages will
identify potentially less resistant trait values.
The recruit community will affect the full
community-level trait composition dependent
on their basal area. It will also provide infor-
mation onpotentially better-adapted trait values
to the current climate that allow them to re-
cruit into the community, as well as indicate
the possible composition of future forests.
We further investigated whether observed

changes in trait composition have been enough
to track climate change to date by comparing
observed and expected trait changes based on
historical trait-environment relationships [see
the materials and methods (35)]. This climate

change tracking analysis was performed for the
full community assemblage and for the survivor
and recruit assemblages, but not for the fatality
assemblage because these individuals will not
contribute to future change (Fig. 2).
Given exposure to a drying and warming cli-

mate, we could reasonably expect an increased
abundance of species exhibiting more drought-
tolerance traits (i.e., in the “slow” section of the
plant economics spectrum) (36), such as high
WD (e.g., to prevent cavitation) (37) and smaller,
thicker leaves (e.g., for lower evapotranspira-
tion and reduced radiation exposure) (38).
However, it is also possible that increasing
drought will drive a shift toward drought-
avoidance traits, notably DE (which is often
associated withmore acquisitive leaves) (32, 39).
Seed traits play a pivotal role in the reproduc-
tion and dispersal capacity of species (10).
Under an unstable, warming, and drying cli-
mate, we might expect species with smaller
wind-dispersed seeds to increase in abundance
(40). This is because wind-dispersed seeds,
which aremore common in drier andmore sea-
sonal biomes, tend to be smaller than animal-
dispersed seeds (41). However, other factors,
such as wind and fire disturbance and de-
faunation of frugivorous seed-dispersing mam-
mals and birds, may disrupt the expected
trends in seed traits because these drive shifts
more strongly at shorter time scales than a
changing climate (42). If migration is an im-
portant component of species response to
climate change, then we would also expect
montane forests to show stronger functional
responses than lowland forests given theirmore

Fig. 1. Study area showing the distribution and number of vegetation plots
sampled across time, principal component analysis, location of sampling plots,
and change in climate conditions (A). (B) Principal component analysis (PC1, PC2,
and PC3) depicting the climate and soil chemistry and texture space available in
the study area. (B and C) Location of the sampling plots in the environmental space
(B) and change in climate conditions (1980 to 1990 versus 2010 to 2020) in the plot
network (C). In (B), PC1 is mainly loaded by the MCWD (–0.527) and VPD (–0.515),

PC2 by Tmean (–0.465) and soil CEC (0.524), and PC3 by soil clay percentage
(–0.535) and soil sand percentage (0.486). In (C), the vertical dotted lines indicate
zero change. Brown colors depict increases in temperature and drier conditions
for MCWD and VPD or increased drought intensity for the SPEI. Blue colors depict an
increase in water availability. In MCWD, larger positive values indicate higher water
stress. Climate data were derived from the TerraClimate project (48) and soil data
from SoilGrids (https://soilgrids.org/) (49).
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varied climatic conditions at shorter distances
(8, 33) thatmake it potentially easier tomigrate
to a favorable climate than in the lowlands
(43–46). In montane forests, nutrient avail-
ability (e.g., N:P ratios) can vary significantly
along altitudinal gradients due to substantial
changes in temperature and water availability
(47). As a result, we expect strong functional
responses to soil nutrient availability across
these elevation gradients.
We expect that, given the long lifespan of

tropical trees and the rapid pace of recent cli-
mate change, forests will show ecological in-
ertia so that changes in functional composition
will lag behind changes in climate. We expect
the full community and survivor assemblages
to show slower change given that their change
is largely dependent on tree growth, which is a
slow process among tropical forest trees. The
recruit and fatality assemblagesmay show faster
and larger community trait responses because
they are less dependent on growth and more
dependent on local climate conditions.

Long-term trait-environment relationships

To evaluate long-term (1980 to 2021) trait-climate
relationships across tropical American forests,

we used data from 415 forest plots [mean plot
size 0.88 ha (minimum: 0.12, maximum: 25)
and 5.7 censuses per plot (minimum: 2, max-
imum: 41)], for which we extracted climate
(48) and soil (49) data for their sampling
years. Because species’ contributions to eco-
system processes likely depend on their rela-
tive abundances (50), we calculated the CWM
of each plant functional trait (table S1) for each
plot based on the relative basal area of the
species and their trait value (hereafter “com-
munity functional traits”). The trait values were
obtained from the sources mentioned above
(19, 25–31). We thenmodeled each community
functional trait as a function of the additive
effects of relevant and largely uncorrelated cli-
matic drivers of species distributions (fig. S1),
i.e., the mean annual values of temperature
(Tmean), vapor pressure deficit (VPDmean) (51),
maximum climatic water deficit (MCWDmean)
(52), and the standardized precipitation-
evapotranspiration index (SPEI12) (53), with
each of these interacting with forest type
(lowland or montane). Because soil charac-
teristics can affect plant distributions (24),
we included cation exchange capacity (CEC),
pH, and the percentage of clay and sand for

each plot location in themodels [see themate-
rials and methods (35)]. We accounted for dif-
ferences in the number of censuses, plot size,
and census time per vegetation plot and for
the potential spatial autocorrelation.
Several community functional traits show

consistent relationships with climate across
forest type (table S2 and fig. S2), with Tmean

showing some of the strongest effects driving
plant trait distributions across lowland and
montane forests (Fig. 3). As expected, an in-
crease in Tmean across space is associated with
an increase in community-mean leaf area and
SM and a decrease in Asat, SLA, and the pro-
portion of DE across lowland and montane
forests. Moreover, an increase in water stress
(MCWDmean) is associated with decreases in
SLA and Hmax for both forest types (table S2
and fig. S2). This represents an increase in the
conservative trait strategy linked to more ex-
treme conditions.
The relationship with Tmean is not, however,

consistent across lowland and montane forests
for leaf chemistry (C, N, and P content), WD,
Hmax, leaf FM, or leaf thickness (Fig. 3). An in-
crease in water stress (MCWDmean) is associ-
ated with an increase in Asat, leaf N content,

Full community assemblage

Time

Mechanisms for change in community trait composition

Survivor assemblage
Survivors impact community 
trait composition by means of
their growth. The survivors 

bear potentially more resistant 
trait values in face of 

environmental change.

Recruit assemblage
New individuals modify the

community trait composition, 
depending on their basal area.

Fatality assemblage
Individuals that contribute to 

the overall basal area die.
These casualities bear 

potentially less resistant trait 
values in face of environmental 

change.  

Fig. 2. Conceptual figure depicting the analyzed mechanisms for change in community trait composition across the study area. Tree individuals that are alive
and have a DBH ≥10 cm are part of the full community assemblage. Across time, there can be changes in the community trait composition due to growth of the surviving
tree individuals (survivor assemblage) given their increase in basal area (top right). Other mechanisms for changing community trait composition across time are the
recruitment (recruit assemblage) of new individuals (middle right) and the death (fatality assemblage) of individuals in the community (bottom right).
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leaf area, and WD across lowland forests but
decreases in montane forests (table S2 and fig.
S2). The increase in these leaf traits in drier
forests could be associated with the high pho-
tosynthetic rates generally attained byDE over
the growing season (54, 55) and the fact that
lower Hmax and higher WD tend to correlate
with higher resistance to lethally low levels of
soil moisture availability (37). However, con-
sistent climatic relationships across both fo-
rest types are not apparent for the other traits
analyzed (table S2 and fig. S2). One plausible
explanation is that this reflects their different
position along the climatic gradient (i.e., Tmean

and precipitation), with lowlands occupying
areas with more homogeneous climate condi-
tions across large spatial extents compared
withmontane forests, which span a large range
of climates across smaller spatial extents.

Changes in trait composition across time

We next investigated whether and how the
functional trait composition of tropical Amer-
ican forests has shifted and how much of this
can be explained by the observed changes in
climate over the past 40 years. We first cal-
culated the CWM of each plant functional trait
for each vegetation census available for full
community assemblage and separately for the
survivor assemblage (individuals that are alive
in two subsequent censuses, e.g., from census

one to census two), recruit assemblage (indi-
viduals not present in the previous census and
recruited in the subsequent census), and fa-
tality assemblage (individuals alive in previous
census but dead in the subsequent census).
We defined the recruit assemblage as individ-
uals that passed the threshold of 10 cm DBH
between one census and the next. We then
calculated their yearly rate of change across
time. We tested whether the changes in trait
CWM differed from zero across all vegetation
plots, with plots separated into lowland and
montane forests. We calculated the highest
density interval (HDI) containing the 95%most
probable effect values and considered it sig-
nificant when the HDI did not overlap 0. We
then investigated whether the observed shifts
in trait CWM differed significantly between
lowland and montane forests. For shorthand
and readability, all mention of mean traits
and shifts below refer to CWM trait values.
When considering all plots together for the

full community assemblage,we found that seven
of the 12 traits analyzed exhibited significant
changes in their CWMvalues (fig. S3; see Fig. 4
for trait changes across assemblages). Only
leaf N, FM, SLA, SM, and WD did not show
significant shifts across time (table S3 and
fig. S4). The survivor assemblage showed the
same pattern of community trait changes (table
S3 and Fig. 5) as the full community assem-

blage, with the main differences being a sig-
nificant decrease in leaf FM in the lowlands
for the survivor assemblage. Thus, hereafter,
we focus on the results from the survivor, re-
cruit, and fatality assemblages. Overall, we
found larger variation in trait CWM across
space (i.e., with geographical variation in cli-
mate) than across time. For the community
traits with significant changes for the survivor
assemblage, we found an average increase in
Asat of 0.0023 mmol m−2 s−1 year−1 (HDI-low
and HDI-high: 0.0007 and 0.0038, respective-
ly), leaf C content 0.0011% year−1 (0.0004 and
0.0019), leaf P content 1.6 × 10−5% year−1 (5.7 ×
10−6 and 2.7 × 10−5), abundance of DE 0.03%
year−1 (0.01 and 0.05), and Hmax 0.006m year−1

(0.002 and 0.009), whereas community leaf
area decreased on average –0.03 cm2 year−1

(–0.06 and –0.007) and leaf thickness de-
creased –0.05 mm year−1 (–0.08 and –0.02)
(table S3 and Fig. 5). In the lowland forests,
we detected significant trait changes for six
(increasing: Asat, leaf C content, Hmax, and
abundance of DE; decreasing: leaf area and
FM) of the 12 traits analyzed (table S3 and Fig.
5). Montane forests showed significant, but
rather small, increases in leaf C and P content,
and the abundance of DE (table S3 and Fig. 5).
The recruit assemblage experienced signif-

icant changes for seven traits, with six showing
decreases, i.e., leaf C content –0.014% year−1
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(HDI-low and HDI-high: –0.02 and –0.001,
respectively, in montane forests), leaf N con-
tent –0.002% year−1 (–0.004 and –0.0002), leaf
thickness –0.04 mm year−1(–0.08 and –0.01),
DE –0.17% year−1 (–0.33 and –0.02), Hmax

–0.03 m year−1 (–0.07 and –0.003), and WD
–0.0007 g cm3 year−1. The leaf FM of recruits
increased on average 0.04 g year−1 (0.006 and

0.08; table S3 and Fig. 5). For the fatality as-
semblage, only the CWM of leaf N content
–0.004% year−1 (–0.007 and –0.001 in mon-
tane forests), leaf FM –0.02 g year−1 (–0.05
and –0.0003) and SM –17.7 mg year−1 (–29.9
and –5.7) in lowland forests experienced sig-
nificant declines (table S3 and Fig. 5).
To help identify the underlying climatic dri-

vers of forest functional change, we used mul-
tivariate linear models to estimate the Dr (i.e.,
from the first to the last census) in the trait
values (Dr trait CWM) as a function of the
yearly rate of change in temperature Tr (DTr),
MCWD (DMCWDr), SPEI (DSPEIr), and VPD
(DVPDr), each of these interacting with forest
type, and accounted for soil characteristics by
including in the models the CEC, pH, and clay
and sand content (maps in figs. S3 to S8). Our
results for the full community assemblage, the
survivor assemblage, and the recruit and fa-
tality assemblages (table S4) demonstrate the
role of climate, specifically temperature and
water availability, as a determinant of trait
shifts across the forests and show the differ-
ences in response between lowland and mon-
tane forests (table S4). Our mapped model
predictions (maps in figs. S3 to S8) depict in
a spatially explicit way areas where stable
CWM trait values (light yellow and light blue)
and their increases (darker blue) or decreases
(yellow to red) are predicted to have occurred
across tropical American forests with some
of the strongest CWM trait shifts predicted
across forests in Amazonia.

Can tropical American forest functional
composition track climate change?

We next investigated whether the observed
community trait changes are sufficient tomain-
tain the expected trait-environment relation-
ships for the full community, survivor, and
recruit assemblages based on spatial relation-
ships between traits and climate. We expected
recruitment to be more sensitive to climate
change because the full community is domi-
nated by the demographic inertia of estab-
lished adult trees. To quantify the trait changes
that would be necessary for forest commun-
ities to track predicted climate change, we first
quantified the relationship between commu-
nity traits and environment before most an-
thropogenic climate changes occurred (1980 to
2005; i.e., as baseline CWM trait-environment
relationships). We took our observed trait-
climate relationships (built with the 1980 to
2005 period data; table S5) and used them to
predict the trait CWM to the 1980 to 2005 cli-
mate conditions plus the observed changes in
climate across the study sites for the full time
period (the past 40 years). This allowed us to
predict the CWM trait values that the forests
would have if they fully tracked recent climate
change, assuming that trait-climate relation-
ships are similar across space and time (table

S6 and table S7). The ratio between the ob-
served and expected changes (for the full and
the recruit assemblages) indicates how closely
these forest traits are tracking our climate
equilibrium predictions based on community
changes alone (Fig. 6).
Our results show that for all measured traits

of the survivor and full community assemb-
lages, the community trait composition is not
changing sufficiently to track climate change,
with most changes being rather small and
unlikely to represent important impacts on
ecosystem functioning. However, the recruit
community shows the largest shifts (Figs. 4
and 6; results for all assemblages are in fig.
S9). At the region-wide scale for the survivor
assemblages, all traits show <8% for lowland
forests and <4% for montane forests of the
change required to track climate. For the full
community assemblage, all traits show <6% of
the climate-predicted shifts in the expected
direction for lowland forests and <7% for
montane forests of the expected change (fig.
S9 and tables S6 and S7). Several traits show
very little change or even modest changes in
the opposite direction from those expected
(Fig. 6, A and B). We detected larger commu-
nity trait shifts in the recruit assemblages of
an average 21.8% of the change required for
lowland forests and 17.5% for montane forests
when only traits shifting in the expected di-
rection are considered. When both shifts in
the expected direction and those in the op-
posite direction are considered, the recruit
assemblage shows an average shift of 11.4%
for lowland forests and –0.67% for montane
forests (Fig. 6, C and D, and tables S6 and S7).
In lowland forests, community mean WD ap-
pears to be changing fast enough in the recruit
assemblages to track climate change expecta-
tion. Overall, we see some evidence of how
the recruit forest assemblages of lowland and
montane forests are shifting their community
traits, often for different sets of community
mean trait values, in response to climate change.
However, for most traits, even the recruit com-
munity does not seem to be changing quickly
enough to track climate change. More signif-
icant community trait shifts have occurred in
lowland forests than inmontane forests, which
is consistentwith amore rapidly drying climate
in the former (table S3 and Fig. 5).

Discussion

Overall, we found that (i) trait-environment
relationships are similar for most of the studied
traits across lowland and montane tropical
American forests; (ii) lowland forests show
significant and larger changes in more com-
munity traits analyzed than do montane fo-
rests; (iii) across the forests and for the full
community and survivor assemblages, the
abundance of DE is increasing, with accom-
panying increases in leaf Asat and decreases

Fig. 4. The analyzed survivor (top panel), recruit
(middle panel), and fatality (bottom panel)
assemblages in the study. In each panel, the
highlighted vegetation represents the specific assem-
blage under analysis. Each panel provides a summary of
observed changes in community traits and the
percentage of climate tracking by each assemblage,
with exception of the fatality assemblage, for which
climate tracking is not possible.
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in leaf area and leaf thickness, yet the recruit
communities in the lowland forests have on
average decreased in the abundance of DE,
leaf N content, and WD; and (iv) crucially, for
the full tree community and survivor assemb-
lages, most of these traits are changing at only
a fraction of the rate required to maintain
equilibrium with climate. The recruit commu-
nities show the best tracking of a changing
climate.
The community trait shifts were similar for

the survivor and full community assemblages
and, although significant in several cases, these

have been rather small over the past 40 years.
In general, such community trait changes dif-
fer from those of the recruit and fatality as-
semblages. This is likely because the trait shift
responses of the survivor and full community
assemblages are dominated by large individ-
uals that continued growing throughout the
study period. Another potential explanation is
that the survivor and full community assemb-
lages, along with their concurrent functional
trait composition, are still able to withstand
the observed changes in climate. The survivor
and full community assemblages have shifted

toward more deciduous communities with
higher Asat, leaf chemistry, and Hmax. At the
same time, we uncovered a general decrease
in leaf thickness for the survivor and recruit
assemblages. Temporal increases in VPD have
potentially favored increases in the proportion
of DE, especially across montane forests, and
increases in MCWD partially explain decreases
in leaf thickness. Overall, DE tend to have ac-
quisitive leaf traits with higher leaf N and
P contents, Asat, and photosynthetic N-use
efficiency, especially under water stress (56),
than do evergreen species (57, 58). The pattern
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observed across tropical American forests could
be attributable to leguminous N-fixing species
that dominate in dry forests, which are often
deciduous and have higher photosynthetic
N-use efficiency (59). This is consistent with a
previous report for West African tropical fo-
rests, where increasing drought stress co-
occurred with an increased abundance of DE,
and changes in DE explained changes in other
morphological, structural, and leaf chemistry
traits (55). The abundance of DE may be lim-
ited by soil fertility (60) in areas such as in
southeastern Amazonia (more so the Guiana
Shield), where short-lived deciduous leaf con-
struction is too costly. Thus, increase in DE is
expected to be one adaptation strategy, espe-
cially in dry tropical forests with more sea-
sonal precipitation regimes and nutrient-rich
soils than wetter tropical forests.
There is a mismatch in trait responses to

climate change between the recruit assemblage
and both the full community and survivor as-
semblages. This mismatch is most pronounced
with respect to the abundance of DE, leaf C
content, and Hmax. With increasing tempera-
tures and reduced water availability, we ex-
pected an increase in abundance of DE to also
be reflected in the recruit assemblage (55).
However, the decline in abundance of DE in
the recruit assemblage indicates potential shifts
in phenological strategies toward more con-
servative strategies in response to increasing
temperatures or altered precipitation patterns.

The recruit assemblages also select for lower
leaf C content and species with shorter Hmax.
This finding suggests a decoupling in trait space
between the functional trait characteristics of
the mature forests that we see in the present
and the possible future functional composi-
tion of tropical American forests. The selection
for low leaf N content in the recruit and fatal-
ity assemblages raises the question of whether
and to what extent such recruit assemblages
will be able to survive to larger adult sizes (e.g.,
56, 61), especially acrossmontane forests, where
there is a stronger mismatch. Such a decou-
pling in trait space between the recruit and
survivor assemblages could potentially indicate
the slow beginnings of forest-level adjustment
to new climatic conditions, which is likely to af-
fect the functioning of tropical forest ecosys-
tems (62). We did not find a significant selection
against DE in the fatality assemblage. This sug-
gests that a combination of drought avoidance
and drought resistance strategies (38) could
both be playing an important role in adapta-
tion to a warming climate across lowland and
montane tropical forests.
Other factorsmay be promoting the observed

change in community-mean traits, such as
species interactions and defaunation, the latter
being a potentially important driver of changes
in dispersal traits across time (63). Somewetter
regions (e.g., central Amazonia) show slight
increases in SM for the full community (fig.
S4D), with the fatality assemblage showing

significant declines in individuals with smaller
seeds in the lowlands (Fig. 5). However, drier
regions (e.g., the southern and eastern fringes
of Amazonia) and montane forests show a
slight predicted decline in SM (fig. S4D). These
changes may be an indicator of defaunation
pressure (64), because spatial predictions of
decreases in SM broadlymatch spatial patterns
of high defaunation (65), especially in those
more accessible areas of Mesoamerica and in
both southern and eastern Brazil. They could
also be driven by climatic factors because the
observed changes are consistent with a shift
from endozoochory (animal dispersal) to an-
emochory (wind dispersal), with the latter ex-
hibiting smaller seeds than those dispersed by
animals and being more prevalent in drier
biomes (41). Including other relevant traits,
such as those related to hydraulics and ther-
mal tolerance, and considering ecological in-
teractions could further bring new evidence of
these potential forest adjustments to a chang-
ing climate.
The survivor, full community, and recruit as-

semblages often showmore changes in traits in
lowland than montane forest. Lowland forests
are highly dynamic and harbor a high func-
tional trait diversity that potentially allows for
selection from a wider pool of trait values
under climate stress. There has been a larger
increase in atmospheric VPD in lowland fo-
rests than in montane forests caused by more
pronounced increases in temperature over the

Fig. 6. (A to D) Tracking of trait
CWM for the survivor [(A) and
(B)] and recruit [(C) and (D)]
assemblages in lowland [(A) and
(C)] and montane [(B) and (D)]
forests given the observed
changes in climate across the
sampling plots. The x axis shows
the ratio of changes in trait
CWM based on actual trait CWM
changes observed at the plot level
through time, versus expected
changes in trait CWM based on
spatial climate-trait relationships
given observed changes in climate.
Positive values (black bars) indi-
cate that observed and predicted
changes are both positive or both
negative and thus are going into
the same direction, whereas nega-
tive values (gray bars) indicate
that observed and predicted
changes are going in opposite
directions. A ratio of change value
of one would indicate perfect
tracking. The y axis shows the
traits sorted by the change ratio
amount (see full statistical details
in tables S6 and S7). Values of zero and close to zero represent no or slight trait shifts.
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past 40 years, which could partially explain
the shift of a larger number of community
functional traits in lowland forests than in
montane forests (66). Larger increases in VPD
andmore severe droughts appear to havemod-
ified the community composition of lowland
forests more strongly than that of montane
forests toward a set of species better adapted
to drier and hotter conditions, which could be
due to the mortality of more vulnerable spe-
cies (51). Recentwork across sites in theAmazon
and the Andes also suggest an important im-
pact of increasing temperatures and declines
in water availability on tree trait composition
(67). We investigated the impact of macrocli-
mate on the changes in functional trait com-
position of tropical forests. However, such
macroclimate conditionsmay not directlymir-
ror the microclimatic conditions, such as tem-
perature, found under the forest canopy (68).
This is of particular importance when investi-
gating the effects of a changing climate, es-
pecially on the recruit assemblages, which tend
to occupy the space below the canopies of
the older, larger trees. Ultimately, such micro-
climatic conditions may play an important
role in determining the responses of under-
story plants to a changing climate (45, 69, 70)
and therefore the rate of change in community
trait composition of the recruit assemblages.
Therefore,microclimatic conditions at the plot
level may partly explain the differences in trait
shifts between the full community and survi-
vor assemblages and the recruit assemblages.
It would mechanistically be expected that

increasing drought would cause plant com-
munities to shift to species with higher WD
and thicker leaves or that the abundance of
DE would increase across time. Such coordi-
nated changes may not readily happen in the
community because it is whole phenotypes
that are changing, i.e., particular combinations
of traits rather than isolated traits. Moreover,
coordination of different strategies could al-
low for alternative adaptations to the same
drivers. For example, drier conditions might
encourage DE combined with low WD and
thin leaves (drought avoidance) or evergreen-
ness combined with high WD and thicker
leaves (drought tolerance). The favored com-
bination(s) may depend on forest seasonality
patterns and soil nutrients. Furthermore, not
all trait combinations may be present in any
given regional species pool, even in species-
rich biomes, which may limit the shifts in
community traits that can occur at any given
time as a response to environmental change.
Other factors may also contribute to trait
shifts or a lack thereof across forest commun-
ities. These include soil conditions (71), biotic
interactions (e.g., animal-plant interactions)
(72), and wind disturbance (73). Our analyses
represent community-wide responses mainly
based on trait information at the species and

genus level; traits may also express intraspe-
cific plasticity that we are unable to assess here
given the scale and multidecadal nature of the
study. Some traits may show more or less
plasticity than others, and species-intraspecific
variation may contribute to adaptation to a
changing climate (74, 75). Overall, there is a
lack of knowledge and data on the extent to
which intraspecific trait variation plays a role
in the adaptation of tree communities to a
changing climate across the tropics. Here, we
analyzed only a set of relevant plant func-
tional traits without adding information on
intraspecific trait variation. Further research
could focus on understanding responses of
tree communities to climate change, includ-
ing as much as possible information on intra-
specific trait variation, and analyzing other
relevant traits. These could be hydraulic and
thermal tolerance traits, which at the mo-
ment are not widely available across tropical
American forests.
In conclusion, we found that overall changes

in community trait composition are leading
to small shifts amounting to only ~10% of the
expectation given climate change. These shifts
are primarily driven by variation in growth
rates of existing trees rather than by recruit-
ment or tree mortality. However, we observed
larger changes for the recruit assemblage,
directionally tracking climate at an average
of 21%, which can potentially contribute to
keeping these forests closer to, although still
far from, the equilibrium with climate. Trees
are long-lived organisms with slow turnover
rates comparedwith the rate of climate change,
and this partly explains the differences ob-
served in community trait shifts between the
full community and those of the recruit as-
semblages. There are specific areas where
there seems to be a larger lag in forest re-
sponses to climate changes, especially in the
Maya Forest in Mesoamerica (76) and both
the Atlantic Forest and the southern Amazon
Forest in Brazil (77), which have become in-
creasingly fragmented over time. Consequent-
ly, the impacts of other disturbances across
these regions, such as habitat fragmentation
and in general a more constrained physical
environment, may be affecting the capacity
of forests to adjust to new climate conditions
(43, 78). Our analysis demonstrates that tree
community composition is shifting to track
climate change, but that the overwhelming
onus would have to be on within-species var-
iability and trait plasticity (79, 80) to adequate-
ly do so. However, the changes in climate are
likely to be too fast for adaptive phenotypic
plasticity to keep track, especially in environ-
ments with low climatic heterogeneity (70, 80).
Thus, it is overwhelmingly likely that the tree
species composition and functional properties
of tropical American forests (and probably all
tropical forests) are increasingly out of equi-

librium with local climate. Such disequilib-
rium almost certainly increases vulnerability
to a further changing climate.

Methods summary
Understanding trait CWM-climate relationships
and the effects of climate change on driving
trait CWM changes

To understand the current trait-climate rela-
tionships across forests of the tropical Americas,
for each plant trait, wemodeled the trait CWM
as a function of climatic and soil covariates,
with each one of the climatic variables inter-
acting with forest type (lowland or montane)
(hereafter referred to asM1).We next analyzed
the climatic drivers of shifts in each functional
trait given observed changes in climate over
the past 40 years for the full community and
survivor assemblages, for the recruit commu-
nity, and for the fatality community. The fatal-
ity community is defined as those individuals
of a plot that were alive in a previous census
but dead in the following census. We calcu-
lated the temporal changes in trait CWM at
the plot level as the Dr to standardize for a
different time between censuses for different
plots. We then modeled the Dr CWM trait as
a function of Dr of the climatic variables de-
scribed above, with each of these interacting
with forest type, and also included the soil char-
acteristics (hereafter referred to as M2).

Understanding shifts in trait CWM

We used the Dr of the trait CWM of the full,
survivor, recruit, and fatality community as-
semblages to investigate whether the rate of
trait changes for the overall forests (lowland
and montane together), for the lowland forests
alone, and for the montane forest alone was
significantly different from0.We did the same
to determine whether there were important
differences between the rate of change between
lowland and montane forests. To this end, we
performed a version of a typical t test analysis
using Bayesian estimation (81, 82). As above,
here, we calculated the HDI containing the
95% most probable effect values and consi-
dered a result significant when the HDI did
not overlap 0.

Understanding whether forest community traits
are tracking climate changes

The process outlined belowwas performed only
for the full community assemblage and the sur-
vivor and recruit assemblages because the fatal-
ity assemblages are not tracking climate. We
first built the same type of statistical models as
M1 but using only plot and climatic data from
between 1980 and 2005, including also the soil
variables (hereafter referred to as M1.1). We
used theM1.1 trait-environment statisticalmod-
els and obtained predictions of the trait CWM
to a new set of climatic conditions composed
of the 1980 to 2005 climate plus the observed
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climate yearly rate of change across the study
period (hereafter referred to as M2). We then
calculated the difference between the trait
CWM obtained with the M1.1 and M2 models
to obtain the expected trait CWM change. Fi-
nally, we compared the expected trait CWM
calculated above with the observed Dr CWM
trait. This allowed us to understand the ex-
pected shift in mean trait values given the 1980
to 2005 trait-climate relationship compared
with the observed trait changes across time
(i.e., from 1980 to 2021). We tested for signif-
icant differences between observed and expected
community trait changes using Bayesian estima-
tion (81, 82). We also created map predictions
of the 1980 to 2005 M1.1 trait-climate model
across tropical American forests by predicting
this model to a climate change scenario that
was composed of the observed climate (1980
to 2005) plus the yearly rate change observed.
We then subtracted the original map predic-
tions (i.e., those made with the M1.1 models
without changes in climate conditions) to ob-
tain the expected CWM trait changes at the
pixel level (in the map) for across forests in
tropical America. Next, we calculated the ratio
of the observed, i.e., spatial predictions of the
trait changes observed across time (from M2
models) versus the expected and converted to
percentage change relative to the 1980 to 2005
condition to determine whether and to what
extent the observed trait changes are tracking
(values above zero) or not (values of zero) the
expected changes given the observed changes
in climate or shifting in opposite direction than
expected (values below zero).
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